Wingsuit Indicated Airspeed
I've been working on a project to try to measure indicated airspeed in a wingsuit based on the pressure in the leg wing and I put together a demo video: https://youtu.be/jQ7ZT_hvThs
The basic idea is that the pressure in the leg wing is going to be pretty close to the total dynamic pressure of the flow, so you can compare it to static pressure and get a pretty good estimate of the IAS, which differs from true airspeed depending on density. I think getting within about 5% of the "real" IAS is pretty realistic. The inaccuracies will come from the angle of attack and the porosity of the fabric. I think the porosity of the fabric is going to make a really small difference and the alignment with the flow will be an issue with any total pressure measurement system.
It makes sense based on conservation of mass and momentum. Apart from the small amount of air that leaks through the fabric, the mass coming into the inlet has to equal the amount going out. The freestream keeps wanting to ram air into the inlet and the only way the inlet has enforce conservation of mass is by pushing back with a pressure gradient equal to the dynamic pressure.
I'm imagining that rather than being a stand-alone system, this could be part of one big Kalman filter with a bunch of other sensors. The basic idea is that you make a prediction, make a measurement, meet somewhere in the middle, then repeat. Where the "middle" is depends on how sure you are about your predictions and your measurements.
On the sensor side, we could attach some uncertainty to the IAS measurement, then combine it with GPS, inertial data, magnetic data, etc (all with their own uncertainties). On the model side, we could start with the most general model possible: a rigid body that can rotate and translate in all three dimensions. Then we can refine it by putting restrictions on it that match the physical system: constant gravitational force, lift only generated perpendicular to the flow and normal to the body, lift and drag are proportional to airspeed, etc.
The CFD software is OpenFOAM, which is free, and the hardware I've been using is a few Adafuit Feathers with BMP280s. I'm about to start a new job where they basically own everything I come up with, so it might become hard to publish this kind of stuff, even for free, so if anyone is interested in playing with or adopting this project, let me know.